

Code compliance checking for electrical systems within BIM models

Mart van Saane

2003219

A thesis submitted for the degree of Master of Science in Computer Games

Supervisor: Prof. Stuart D. Walker

Industrial Supervisor: Dr. Anasol Peña-Rios

School of Computer Science and Electronic Engineering

University of Essex

August 2021

1

Abstract

Manual code compliance checking is prone to errors, which can lead to big costs in the
construction sector. Automatic code compliance checking algorithms within BIM have yet to
see a good adaptation within the BIM workflow, but it could greatly benefit from it. As part of
this research a proof of concept application has been developed that provides tools to assist in
code compliance checking of electrical systems within an IFC file. Basing the application on
IFC has made it easily adoptable with existing BIM applications. The tool allows the user to
easily examine and analyse the electrical network in a building by providing 2D network
graphs. And allowing the user find the shortest path between two elements in the electrical
network.

Keywords: Building Information Modeling (BIM), Industry Foundation Classes (IFC),
Mechanical, Electrical and Plumbing (MEP), code compliance checking

2

Table of Contents

ABSTRACT .. 1

INTRODUCTION .. 3

1 BACKGROUND KNOWLEDGE .. 4

1.1 BIM ... 4
1.2 IFC .. 5
1.3 IfcOpenShell ... 6
1.4 Shortest path algorithms .. 6
1.5 Related work ... 7

2 DESIGN AND IMPLEMENTATION ... 8

2.1 Requirements .. 8
2.2 Application workflow ... 9
2.3 GUI ... 11
2.4 Network view .. 12

3 EVALUATION .. 14

3.1 Network ... 14
3.2 Automatic code compliance checking ... 15

4 CONCLUSION .. 16

REFERENCES ... 16

3

Introduction

Building Information Modelling (BIM) has been revolutionizing the construction sector for
the last two decades. The UK government was one of the first advocators of the integration of
BIM. Which has already resulted in 73% of UK companies adopting the technology in some
of their work, and only 1% not knowing about the technique (NBS, 2020).

BIM aims to centralize all the data for a construction project between all its shareholders.
This dynamic data model starts at the design phase, but also plays a vital part in the
construction phase. And can even be transferred after construction to the client for
maintenance use.

A model containing a large amount of data like BIM is prone to contain errors. Therefore all
the data in the model must be checked to see if it satisfies certain standards. This process of
checking is also referred to as code compliance checking. Traditionally errors have to be
discovered and fixed by manual code compliance checking. This is very time-consuming
process and leads to errors in itself as well (Ismail et al, 2017).

This research has been done in collaboration with BT. As part of their Network Digital Twins
project, they are looking to build applications to leverage the capabilities of BIM data (Leon-
Garza et al, 2020). Where they are mostly interested in the electrical components within a
BIM model, as that ties in with BT’s work.

So in this research a code compliance checking approach will proposed, suitable for
analysing the electrical network in a BIM model. It was planned for it to be an automatic
system, but in the end, it has been developed in a tool for assisting the user in the manual
process. How the tool could be extended to an automatic approach will however be discussed
as well.

4

1 Background knowledge

1.1 BIM

Building Information Modelling, from this point referred to as BIM, is a process for creating
and managing information in construction shared by all stakeholders. BIM differs from
conventional approaches, like the use of CAD, by centralizing all the information in one data
form. Previously if one floorplan changed, this would have to be manually updated in all other
models and sketches. Leading to a lot of mistakes. BIM prevents this by automatically updating
all information in the data, when it gets changed in one place.

BIM models are generally split between three major domains, illustrated in figure 1. First of
all, there is an architectural layer, responsible for the architecture of the building. So this layer
determines how the final building will look on the surface. Secondly a structural layer is made.
Which determines the geometry and materials used for the structure. Generally this layer is
covered by the architectural layer, and therefore not visible from the outside. Lastly, the most
important layer for this research which is the MEP layer.

The Mechanical, Electrical and Plumbing (MEP) layer mainly contains components the
following three categories: ducts for Heating, Ventilation and Air conditioning (HVAC),
piping for water and gas, and lastly cable trays and control boxes for electrical and
communication systems. Within this layer the cable trays are mainly the point of interested.
Where the specific cabling is often flexible, the cable trays are fixed. Therefore the routing of
electric and network cables must be based upon this (Eastman et al, 2008).
This makes it essential to check if these cable trays are placed and connected correctly before
construction. For which this research will propose an application to aid in this process.

Figure 1. Example different layers in BIM. From left to right: architectural,

structural, MEP (Innovation In Building, 2010)

5

1.2 IFC

Industry Foundation Classes (IFC) is an open international specification to share BIM data
between various actors in building construction. The application developed for this research is
exclusively build upon IFC. An added benefit of having the application based on IFC files, is
that it can be used regardless of the software in which the BIM model has been produced.

IFC is defined in four conceptual layers (Bazjanac & Crawley, 1997), with each layer
containing an associated data scheme (buildingSmart, 2020), as shown in figure 2.

The first layer is the resource layer, this layer defines all low-level features unrelated to
specific industries. Therefore a resource in this layer can’t exist on its own, and is only to be
used as a reference for the higher layers. All the elements in this layer are part of the resource
definition data schemes. This layer for example contains the IfcDateTime data scheme, which
in itself is not part of a building, but it can by referenced to by components in the building.

The second layer in the IFC architecture is the core layer, connected to the core data schemes. This

layer is used to define the features of the resource layers into products, processes and controls. From

this layer onwards, all data schemes derive from IfcRoot, meaning they contain an unique identifier,

name and description. Elements within this layer are mostly used to define relations within a BIM

model.

Figure 1. Data architecture of IFC with conceptual layers (buildingSmart, 2020)

6

The interop layer contains models to serve the domain layer. It contains definitions for specific to

general products like wall, column and door. It’s mostly used as a means to share common

information between different industries, therefore these elements are contained in the shared element

data schemas. Interesting for this research are the IfcFlowSegment and IfcFlowFitting elements in this

layer, which will be further elaborated on in section 2.4.

Lastly, the domain layer contains definitions for industry specific objects. Here a differentiation

between the architectural, structural and MEP domains can once again be noticed. Where the MEP

layer has been split into the domains of: HVAC (heating, ventilating and air condition), Electrical,

Plumbing FireProtection and Building Controls. The elements in this layer are part of the domain

specific data schemas. None of the elements in this layer are directly used in this research.

1.3 IfcOpenShell

Within the development of the application IfcOpenShell has extensively been used.
IfcOpenShell is an open-source software library designed to assist with the development of
applications using IFC (IfcOpenShell, 2021). Part of this toolset is a python library that allows
for easy parsing of IFC files. For example, the library can be used to lookup all the components
belonging to a certain IFC tag. A technique that will be further elaborated in section 2.4.

Additionally the toolkit also contains an application for converting IFC files into several file
formats, named IfcConvert. This application allows IFC geometry to be converted into
traditional geometry file types like: WaveFront OBJ, Collada, STEP and IGES. And also
allows the metadata in the IFC files to be converted to XML. Which allows for much easier
parsing.

1.4 Shortest path algorithm

The goal of a shortest path algorithm is to find a path from a start point to an end point in a
network. There are many algorithms to achieve this, a lot of these are based on Dijkstra’s
algorithm. Seeing as it is one of the simpler algorithms, that is the one we will focus on in this
project.

Dijkstra’s algorithm can be broken down in a few steps (Candra et al, 2020):

1) Set a distance value to every node. This will be zero for the start node, and infinite for
any other node.

2) Put all the nodes in an open set, which identifies them as unvisited.

3) Get the node with the lowest distance value from the open set, and remove it.

4) Calculate distance to all the neighbours of this node. Compare the current distance
assigned to a neighbour to this newly calculated distance, and assign the smaller one.

5) Repeat from step 3 until the node defined as end point is found. Or until the open set
only contains nodes with a distance value of infinity, in which case no path exists
between the given start and end point.

7

1.5 Related work

Studies exploring automated design and code compliance checking have been conducted since
the 1960s, this research has especially been fuelled be the recent surgency of BIM. Designers
and local authorities traditionally have to do the code compliance checking manually. Which
introduces a lot of room for error, and it is a very time-consuming task. While it is essential for
these errors to be spotted during the design phase, as to avoid causing costly reworks of the
building at a later date.

Automatic code compliance is currently mostly implemented with rule-based approaches,
where it generally only focuses on specific regulations (Ismail et al, 2017). This also applies to
this research, because it only focuses on the domain of the electrical network.

Research has been done into code compliance checking software for water distribution systems.
For this application the LicA database has been developed (Martins and Abrantes, 2010).
Information in the domain of water distribution systems in Portugal is included in this database.
After extracting all the relevant data from a BIM model, with the use of an automatic converter.
The data can then be put through the database to perform the automatic code compliance
checking. After which the user can use a separate application (LiCAD) to see the result of the
checks. These results are indicted with a colour coding system, telling the user the amount of
compliance a specific element has to the domestic regulations.

In the initial study of the LicA application on specific BIM filetypes. But in later studies the
algorithm was also adopted to work on IFC files (Martins and Monteiro, 2013). Although they
did not succeed to get the exact same results as with the BIM files. As the database turned out
to be only compatible with IFC for 90%. So this should note that an application based on IFC
is slightly more limited than an application based on BIM files. But the advantage is that the
application gets a lot more versatile, because it will be able to interact with any other BIM
software.

8

2 Design and Implementation

2.1 Requirements

In this section the requirements for the application developed for this research will be
discussed. These requirements are a mix of the requirements determined at the project proposal,
and requirements determined during development.

 Functional requirements
► The application shall have a GUI
►The GUI shall have a hierarchy, showing the structure in the BIM model
►The GUI shall be able to enable and disable certain BIM objects
►The GUI shall show the user the metadata connected to a BIM object
►The user should be able to search in the GUI hierarchy
►The user should be able to save the conversion from IFC to OBJ and XML
►The application should have a VR controller
►The application should have an algorithm to highlight missing information
►The GUI may contain a network view showing the electric network
►The user may be able to find the shortest path between the nodes in the network view

 External interface requirements
►The application shall run on Windows
►The application should run on Unity WebGL

The colours show the status of the requirements. Where green requirements have been
completed successfully, yellow requirement have partly been developed and the red
requirements have not been implemented. Why some of these requirements have failed will be
elaborated now.

Initially the application was envisioned to have a VR controller. The application does contain
a camera controller, to allow the user to navigate around the BIM model. However, adapting
this to a VR controller or headset was not deemed necessary during development.

Similarly the application was planned to contain or interact with a machine learning algorithm
to highlight missing information in the electric components of the BIM model. Because there
was not enough time to implement this in this research. It was instead opted to develop an
algorithm to find the shortest path between two nodes in the electrical network.

The application has been developed in Unity, which is a cross-platform game engine. One of
the platforms Unity can export to is WebGL, that allows the application to run in a browser,
making it much more accessible to people. Therefore the application was supposed to be web-
based, with the use of the built-in WebGL build option in Unity. However it is much more
difficult within WebGL to access files on the user’s computer. Which is vital, as the user has
to upload an IFC file. It is possible to interact with the file system if the WebGL client interacts
with a local PHP server. However problems with the installation of PHP occurred during the
development stage. Which is why the web client was not deemed necessary at this point in the
application. And instead the project has been exported as a windows application.

9

2.2 Application workflow

This section will discuss the workflow of the application accompanied with figure 3.

The user starts with importing an IFC file in the application. This IFC file will be converted to
three different file types by the IfcConvert application belonging to the IfcOpenShell library
(section 1.3). The resulting files are an OBJ, MTL and XML file.

The OBJ file includes all the geometry included in the BIM model, separated in individual BIM
objects. This file gets parsed on a separate thread to retrieve all the vertices, uvs, normals and
faces, as to not block the main Unity thread, because Unity only runs on one thread. Every face
in the geometry is parsed as having double sided normals. The generation of GameObjects, that
allow to geometry to be rendered by Unity, can only be done on the main thread however. So
after parsing the OBJ file, the data will be included in GameObjects on the main thread.

To parse the OBJ file correctly the MTL file is needed, to apply the correct materials to all the
objects. This importer can run alongside the OBJ importer, where the materials can be applied
during the generation of GameObjects. The MTL importer has been designed to be able to
parse the diffuse and specular colours of materials, as well as the alpha and glossiness value of
the material. In reality, a MTL file can contain more variables, however these variables did not
seem to be generated by the algorithm of IfcConvert. So they got left out to be able to easily
convert to Unity’s material system.

One more limitation of the materials is that only one material is applied to a single object.
While some objects may contain multiple. It’s impossible within Unity to define which faces
use which material, therefore only the first material encountered in the OBJ file will be used.
It would be possible to convert a single object into multiple objects to allow for multiple
materials. But because of a time constrained, this didn’t get implemented as part of this
application.

After the OBJ file has been parsed, the application will have a list of GameObjects named after
their GUIDs. To attach meaningful data to the geometry, the XML file generated by IfcConvert
also needs to be parsed. This file contains all the metadata connected to the IFC file, including
the hierarchy of all the objects.

From the XML file all the IFC elements are generated. If a GameObject with the GUID of the
IFC element exist, it will be connected to that element. An IFC element doesn’t necessarily
own any geometry, often times it does contain geometry in its children. All the GameObjects
are put in the same hierarchy as found in the XML file, this makes easy to disable or enable the
geometry, while making sure the children also do the same.

After having defined all the IFC elements. The hierarchy view and the network view in the
GUI is also be generated. More information on this can be found in sections 2.3 and 2.4.

Because the conversion of IFC by IfcConvert is time-consuming, the application also allows
the user to save the conversion in case they want to check the BIM model at a future date as
well. Normally the OBJ, MTL and XML files will only be stored temporarily. But when the
user decides to store the conversion, they can define a location in their file system too store
these three files. Which can then be used at a later date to import the BIM model directly from
the OBJ file. For this to work the application will check to see if an XML file with the same
name exists in the same folder. Because they are both required for the application to
successfully import the BIM model.

10

Figure 3. Activity diagram of the application

11

2.3 GUI

A major part of the work while developing the application went into the design of the graphical
user interface (GUI). The design can be identified as three major parts. First of all the
application has a tree view, containing all the separate elements and the respective hierarchy
as contained in the BIM model. The user can use this to find specific BIM elements. Connected
to this part is a property view, which shows the user all the metadata connected to the currently
selected element. Lastly the GUI contains a network view, allowing the user to easily check
the electrical components in the BIM file, this will be further elaborated in section 2.4. These
three major parts are depicted in figure 4 .

The tree view took the most amount of work. This was caused by the BIM file structure having
a hierarchical structure, which also needed to be reflected in the GUI. Therefore the design was
based of two tree view design guidelines made by Adobe (Adobe 2021) and Rivers (Rivers
2020).

Most importantly from this design is the search function. While the user searches the tree for
something, the tree needs to filter out all the elements which don’t satisfy the search query. But
if an element does satisfy the search query, then all its parents also still need to be included in
the GUI. Otherwise the hierarchical structure is lost. Additionally the tree view should also be
consistent, so the tree should remain in the current state of which parents have been expanded.
Otherwise the user will get lost in which part of the hierarchy they were working in. This is
demonstrated in figure 5.

Figure 4. Picture displaying the GUI, with from left to right the tree view, property

view and network view.

12

2.4 Network view

To be able to interact with the network view, this network first has to be generated. This is
done with an algorithm created by Hugo Leon-Garza from BT as part of his Ph.D. research.
Pseudo code of the algorithm can be found in algorithm 1.

ifcFile = ifcopenshell.open(file)

cabletrays = ifcFile.by_type(‘IfcFlowFitting’ or ‘IfcFlowSegment`)

foreach tray in cabletrays:

 if tray does not contain keyword “cable”:

 cabletrays.remove(tray)

json = new json

foreach floor in floors:

 add new floor to json

 foreach element in floor:

 if element in cabletrays:

 floor.nodes.add(element)

 floor.edges.add(element.hasPorts)

Figure 5. Search in GUI retaining the tree structure

Algorithm 1. Algorithm to generate the network view

13

So the algorithm looks for elements of type IfcFlowSegment or IfcFlowFitting. This will
however also contain elements from the water installation for example. Therefore any element
that does not contain the word cable will be filtered out. Leaving only the elements concerning
the cable tray system of a building.

From these elements the element ID, position, building storey and label are extracted, giving
all the nodes of the network. After which the algorithm also needs to gather the data for the
edges of the network. IfcFlowSegment and IfcFlowFitting contain a property HasPorts,
containing a set of IfcPort elements. Which represent either a logical or physical connection in
the network. The relation between two elements is extracted from the “connected from” and
“connected to” properties in the IfcPort.

The result of the algorithm is a JSON containing the floors of the building, with the respective
nodes and edges found of the floors. The structure of the JSON is as follows:

Currently this specific this JSON has been hardcoded into the application. So the network graph
only works for the BIM model which was used throughout the development of the application.
It was intended that the application would send the IFC file to a cloud based application, for it
to parse the file and return a processed JSON. The cloud based service was however not able
to be finished in time by BT for this research. Nevertheless, with the pre-generated JSON file,
it was possible to fully implement and test the application.

The JSON file is parsed by the application. Where all the nodes get initialized as circled on the
position provided in the file. The edge information is used to draw the connecting lines between
the nodes. The full network graph is then moved and resized to fit on the user’s screen.
Additionally, every node also gets connected to the GUI element of the same id. Allowing for
all the interaction between the network graph and GUI.

"Floor name 1":{

 "nodes":[

 { "id":"1uq87nwqT6IhktBe0A8PD6",

 "label":"Cable Tray with Fittings",

 "x":119315.55287068,

 "y":152695.047543581 },

],

 "edges":[

 { "from":"1uq87nwqT6IhktBe0A8PD6",

 "to":"1uq87nwqT6IhktBe0A8P5H" },

]

}

"Floor name 2": {

14

3 Evaluation

3.1 Network

The application allows the user to check the electric network, by checking the path between
two electric components in the BIM model, as illustrated in figure 6. To do this the user selects
a start and end point, which are coloured green and red respectively. If path between these
nodes is found, the nodes found along the shortest path will be coloured orange. Depicted in
the network view, GUI and 3D model. Which allows the user to easily inspect the elements in
the path.

Because of the limited data BT was able to provide for this research. No studies were able to
be conducted on the speed of different path finding algorithms. As there was only access to
one BIM model, which is relatively small. With the biggest graph only containing 54 nodes,
and where most of the graph is disconnected from the rest of the graph

As mentioned before Dijkstra was implemented as the path finding algorithm. By adding a
heuristic to the algorithm the path finding algorithm could benefit from an increase in speed.

One thing that should be noted in figure 6, is that some of the spatial properties can lost in the
network graph. In the network graph the electric network gets flattened, causing elements
positioned directly above each other to be at the same location in the graph. The application
does already provide a solution for that, as the BIM elements included in the graph can also
be set as start and end points directly from the 3D model.

But as mentioned in section 2.4, the graph is currently generated separately per floor. So it is
not possible to calculate the path between two nodes on different floors. To achieve this the

Figure 6. Illustration of the path finding tool to check code compliance

(Top: BIM model, bottom: network graph)

15

algorithm made by Leon-Garza (algorithm 1) could be adapted to generate a 3D graph
instead. Which would already be able to be integrated with the application, as the path
finding algorithm also works in three dimensions as long as the correct distance are applied.

It does bring the problem of displaying the 3D graph, for this two solutions are proposed.
First of all the application can be kept the same as the current state. Where the 3D graph is
still generated separately for different floors, but where the nodes will also contain the
‘invisible’ connections to nodes on other floors. Essentially creating a 2.5D graph, with slices
of the floors, for the user to interact with.

Alternatively the graph could be displayed fully in 3D. For this the application could allow to
filter out all the elements which aren’t connected to the network graph. So that user has the
possibility to examine the whole graph in one view. This 3D graph could either be displayed
as in a minimalistic manner, with lines and spheres. Or still using the BIM geometry, which
might make it the code compliance process much clearer.

However it would also be possible to implement a hybrid of the two proposed solutions.
Where the user will both be able to check the graph in a 2D view, as well as easily get an
overview in the 3D view.

3.2 Automatic code compliance checking

The original intend of this research was to create an application for automatic code compliance
checking of the electric network in a BIM model. Where the application would highlight areas
which were suspected to contain some missing information, for example if a cable tray isn’t
connected to anything. In the end because of a lack of time it wasn’t possible to achieve this,
and the research instead transformed to a more manual application.

An automatic code compliance algorithm could however work by analysing the electrical
network, to check if no unconnected cable trays exist in the building. Because it would be
unexpected for a cable tray to not be connected with the rest of the network. The algorithm
could then flag these cable tray, and make it known to the user that it is suspected that these
elements are missing information. After which the user can manually check if this is the case,
or determine that the model is considered correct.

While the current application only works based on the IFC data schemas IfcFlowSegment and
IfcFlowFitting. An automatic code compliance algorithm could likely benefit from using more
of the domain specific data schemas. Where it also has access to IfcDuctSegment for example,
eliminating the need to manually filter through the flow segments and fittings to only end up
with the cable trays. Furthermore this domain also contains elements like power outlets, cable
segments, junction boxes and communication appliances. Vastly broadening the scope of code
compliance checking that could be done within the electrical network.

16

4 Conclusion

A newly developed application for assisting in manual code compliance checking on the
electrical network of a BIM model was presented. The application allows the user to examine
the standard contents of a BIM model, but also gives a new way to analyse the electric
components in a building. Generated graphs of the electrical network and path finding within
the network can be used to analyse the model for any missing components.

While the research in this project has been limited to a single building, because of a lack of
more data, this application will be especially helpful in larger BIM models. While checking the
code compliance of multiple electrically connected buildings for example. In which finding the
shortest path between two electrical components might be a lot less trivial.

As the application mostly serves as a proof of concept, there are many areas of future work.
First of all the application could benefit immensely from an automatic code compliance
algorithm, to identify areas suspected of missing information, which can then be manually
further analysed with the tools given in this project.

Furthermore the tools could also be implemented into other similar problem areas, mainly the
ones in the domain of MEP, for example checking the code compliance of water and gas pipes
in a building.

Acknowledgements

Thank you to my industrial supervisor, Dr Anasol Peña-Rios, for providing assistance in every
stage of the project and for her help in shaping the application to what it is now. Thanks also
to Hugo Leon-Garza for his work in the generation of the network view, and helping me explain
how it works. Lastly thanks to my supervisor Prof Stuart D Walker for his guidance in writing
this dissertation.

References

Adobe. (2021, March 23). Tree view. Retrieved 8 30, 2021, from Spectrum:

https://spectrum.adobe.com/page/tree-view/
Bazjanac, V., & Crawley, D. B. (1997). The Implementation of Industry Foundation Classes in

Simulation Tools for the Building Industry.

buildingSmart. (2020). Industry Foundation Classes 4.0.2.1: Introduction. Retrieved 4 16, 2021, from

buildingSMART Internation Standards Server:

https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/link/introductio

n.htm

Candra, A., Budiman, M. A., & Hartanto, K. (2020). Dijkstra's and A-Star in Finding the Shortest

Path: a Tutorial. 2020 International Conference on Data Science, Artificial Intelligence, and

Business Analytics (DATABIA), (S. 28-32).

Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2008). BIM Handbook. John Wiley & Sons.

17

IfcOpenShell. (2021). The open source ifc toolkit and geometry engine. Retrieved 8 25, 2021, from

http:/ifcopenshell.org/

Innovation In Building. (2010). Retrieved 8 25, 2021, from https://www.yearininfrastructure-

digital.com/yearininfrastructure/2010/MobilePagedArticle.action?articleId=1456730#articleId

1456730

Ismail, A. S., Ali, K. N., & Iahad, N. A. (2017). A Review on BIM-Based Automated Code. 2017

International Conference on Research and Innovation in Information Systems (ICRIIS), (S. 1-

6). doi:10.1109/ICRIIS.2017.8002486

Leon-Garza, H., Peña-Rios, A., & Conway, A. (2020). Using BIM and Augmented Reality in Field

Service Operations. BT.

Lomio, F., Farinha, R., Laasonen, M., & Huttunen, H. (2018). Classification of Building Information

Model(BIM) Structures with Deep Learning. In 2018 7th European Workshop on Visual

Information Processing (EUVIP) (S. 1-6). Tampere, Finland.

Martins, J. P., & Abrantes, V. (2010). Automated code-checking as a driver of BIM adoption.

International Journal for Housing Science and Its Applications, 34(4), 287-295.

Martins, J. P., & Monteiro, A. (2013). LicA: A BIM based automated code-checking application for

water distribution systems. Automation in Construction, 29(23), 12-23.

NBS. (2020). 10th Annual Bim Report. Retrieved August 25, 2021, from

https://www.thenbs.com/knowledge/national-bim-report-2020

Rivers, H. (2020, June 23). Interaction Design for Trees. Retrieved 8 30, 2021, from Medium:

https://medium.com/@hagan.rivers/interaction-design-for-trees-5e915b408ed2

